More Ul Output Tasks:
Damage Management & Layout

Georgia
Tech &

—

o000
o000
| | eeee
Georgia | eee
Tech | 2°

Damage management

® Need to keep track of parts of the screen that need update

interactor has changed appearance, moved, appeared,
disappeared, etc.

done by “declaring damage”

each object responsible for telling system when part of its
appearance needs update

(YY)
XY X
| | eeee
Georgia | eeoe
Tech : bt

Damage management

® Example:in Swing done via a call to repaint()
takes a rectangle parameter
Adds the specified region to the RepaintManager’s dirty list
list of regions that need to be redrawn

RepaintManager schedules repaints for later, can collapse
multiple dirty regions into a few larger ones to optimize

When scheduled repaint comes up, RepaintManager calls
component’s paintimmediately() method, which calls
paintComponent(), paintChildren(), paintBorders()

You generally never want to call this yourself

Generally, seldom need to work with RepaintManager
directly

Damage Management

® Can optimize somewhat
Multiple rectangles of damage

Knowing about opaque objects

® But typically not worth the effort

Georgia |
Tech |

—

Georgia @ ::::.
Tech :::'
Damage Management in Swing N

JComponent RepaintManager

Georgia |
Tech |

Typical overall “processing cycle”

loop forever
walt for event then dispatch 1t

causes actions to be invoked
and/or update interactor
state

typically causes damage
1f (damaged somewhere)

layout

redraw

Georgia |
Tech |

Layout

® Deciding size and placement of every object
easiest version: static layout
objects don’t move or change size
easy but very limiting
= hard to do dynamic content

only good enough for simplest cases

Georgia |
Tech |

Dynamic layout

® Change layout on the fly to reflect the current situation
® Need to do layout before redraw

Can’t be done e.g., in paintComponent()
Why!?

o000
| eee®e
| | eoeee
Georgia | eee
Tech | 2°

Dynamic layout

® Change layout on the fly to reflect the current situation
® Need to do layout before redraw
Can’t be done e.g., in paintComponent()

Because you have to draw in strict order, but layout (esp.
position) may depend on size/position of things not in order
(drawn after you!)

XY
' TXX)
| | eoeee
Georgia | eeoe
o0
o

Tech |
Layout in Swing .

® invalidate() method
Called on a container to indicate that its children need to be laid out

Called on a component to indicate that something about it has changed that
may change the overall layout (change in size, for example)

® validate() method

Starts the process that makes an invalid layout valid--recomputes sizes and
positions to get correct layout

10

“Issues” with Swing validation

o000
o000
| | eeee
Georgia | eee
Tech | 2°

invalidate() is often called automatically
e.g., in response to changes to components’ state
... but not always
e.g., if a |Button’s font or label changes, no automatic call to invalidate()
Mark the button as changed by calling invalidate() on it
Tell the container to redo layout by calling validate() on it
In older versions of Swing you had to do this by hand
Newer versions (post |.2) add a shortcut: revalidate()
Invalidates the component you call it on

Begins the process of validating the layout, starting from the appropriate parent
container

Validation also uses the RepaintManager

11

Layout Validation in Swing

JComponent

Georgia
Tech

RepaintManager

&

12

XY
' TXX)
) 0000
Georgia | eeoe
o0
o

Tech |
Layout with containers .

® Containers (parent components) can control size/position
of children

example: rows & columns

Two basic strategies

Top-down (AKA outside-in)
Bottom-up (AKA inside-out)

13

Georgia |
Tech |

Top-down or outside-in layout

® Parent determines layout of children
Typically used for position, but sometimes size

Example?

14

Georgia |
Tech |

Top-down or outside-in layout

® Parent determines layout of children
Typically used for position, but sometimes size
Dialog box OK / Cancel buttons

stays at lower left

OK Cancel

15

Bottom-up or inside-out layout

® Children determine layout of parent
Typically just size

Example?

000
| eeee
|| eoeee
Georgia | eeo
Tech| | ®°

16

o000

o000

|| eee

Georgia | eee
Tech | 2°

Bottom-up or inside-out layout

® Children determine layout of parent
Typically just size
Shrink-wrap container
parent just big enough to hold all children
e.g., pack() method on JWindow and |Frame

= Resizes container to just big enough to accommodate
contents’ preferredSizes

17

' TXX)

] o000
Georgia oo0o

Tech oo

—

Which one is better?

18

Georgia
Tech |

Neither one is sufficient

® Need both
® May even need both in same object

horizontal vs. vertical

size vs. position (these interact!)

® Need more general strategies

19

Georgia |
Tech |

Layout Policies in Swing

® Swing layout policies are (generally) customizable
® Some containers come with a “built-in” layout policy
JSplitPane, |ScrollPane, JTabbedPane
® Others support “pluggable” policies through LayoutManagers
LayoutManagers installed in Containers via setLayout()
Two interfaces (from AWT): LayoutManager and LayoutManager2
Determines position and size of each component within a container
Looks at components inside container:
Uses getMinimumSize(), getPreferredSize(), getMaximumSize()
... but is free to ignore these
® Example LayoutManagers:
FlowlLayout, BorderLayout, GridLayout, BoxLayout, ...

20

Georgia |
Tech |

Layout Policies in Swing

® Each LayoutManager is free to do what it wants when layout out
componens

Can ignore components’ min/preferred/max sizes
Can ignore (not display) components at all
® Generally, most will look at children’s requests and then:
Size the parent component appropriately
Position the children within that component

® So, top-down with input from child components

21

More general layout strategies

® Boxes and glue model
® Springs and struts model
® Constraints

000
| eeee
| | eeee
Georgia | eee
Tech | ¢

22

o000

o000

|| eee

Georgia | eee
Tech | 2°

Boxes and glue layout model

® Comes from the TeX document processing system

Brought to Ul work in Interviews toolkit (C++ under X-
windows)

Tiled composition (no overlap)
toolkit has other mechanisms for handling overlap

glue between components (boxes)

23

Boxes and glue layout model

® 2 kinds of boxes: hbox & vbox
do horiz and vert layout separately
at separate levels of hierarchy
® Fach component has

natural size
min size
max size

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

24

Georgia |
Tech |

Box sizes

® Natural size
the size the object would normally like to be
e.g., button: title string + border
® Min size
minimum size that makes sense
e.g. button may be same as natural
® Max size ...

25

Georgia |

Tech |

Boxes and glue layout model

® Each piece of glue has:

natural size

min size (always 0)

max size (often “infinite”)
stretchability factor (0 or “infinite” ok)

® Stretchability factor controls how much this glue
stretches compared with other glue

26

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Example (Paper: pl 3, fig 4&5))

® Two level composition
vbox

middle glue twice as stretchable as top and bottom
hbox at top

right glue is infinitely stretchable
hbox at bottom

left is infinitely stretchable

27

e00

o00

|| eee

Georgia | eeo
Tech | 2°

How boxes and glue works

® Boxes (components) try to stay at natural size
expand or shrink glue first

if we can’t fit just changing glue, only then expand or shrink
boxes

® Glue stretches / shrinks in proportion to stetchability
factor

28

Georgia |
Tech |

Computing boxes and glue layout

® Two passes:
bottom up then top down
® Bottom up pass:

compute natural, min, and max sizes of parent from
natural, min, and max of children

natural = sum of children’s natural
min = sum of children’s min
max = sum of children’s max

29

e00

o00

|| eee

Georgia | eeo
Tech | | 2°

Computing boxes and glue layout

® TJop down pass:
window size fixed at top
at each level in tree determine space overrun (shortfall)
make up this overrun (shortfall) by shrinking (stretching)
glue shrunk (stretched) first

if reaches min (max) only then shrink (stretch
components)

30

Georgia : : : :
Tech : o
Top down pass (cont))

® Glue is changed proportionally to stretchability factor
example: 30 units to stretch
glue | has factor 100
glue_ 2 has factor 200

stretch glue | by 10

stretch glue 2 by 20
® Boxes changed evenly (within min, max)

31

What if it doesn’t fit!?

® layout breaks
negative glue
leads to overlap

|| ®®
Georgia | eeoe
Tech| | %°

32

o000
o000
| | eoeee
Georgia | eee
Tech | 2°

Springs and struts model

® Developed independently, but can be seen a simplification
of boxes and glue model

more intuitive (has physical model)
® Has struts, springs, and boxes
struts are 0 stretchable glue

springs are infinitely stretchable glue

33

Springs and struts model

® Struts
specify a fixed offset

® Springs
specify area that is to take up slack
equal stretchability

® Components (boxes)

not stretchable (min = natural = max)

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

34

o000
| eee®e
| | eoeee
Georgia | eee
Tech | 2°

Constraints

® A more general approach

® General mechanism for establishing and maintaining
relationships between things

layout is one use

several other uses in Ul
deriving appearance from data
multiple view of same data
automated semantic feedback

35

o000
o000
| | eoeee
Georgia | eee
Tech | 2°

General form: declare relationships

® Declare “what” should hold
this should be centered in that
this should be 12 pixels to the right of that
parent should be 5 pixels larger than its children
® System automatically maintains relationships under change
system provides the “how”

36

You say what
System figures out how

® A very good deal
® But sounds too good to be true

|| oo
Georgia | eee
Tech | | ¢

—

37

(8
YOU Sa.)’ What Ge?l'regciﬁ s:o

System figures out how

® A very good deal
® But sounds too good to be true
It is: can’t do this for arbitrary things (unsolvable problem)

® Good news: this can be done if you limit form of
constraints

limits are reasonable
can be done very efficiently

38

o000
o000
| | eeee
Georgia | eee
Tech | 2°

Form of constraints

® For Ul work, typically express in form of equations

this.x = that.x + thatw + 5
5 pixels to the right

this.x = that.x + that.w/2 - this.w/2

centered
this.w = 10 + max child[i].x + child[i].w

|0 larger than children

39

o000
| eee®®
| | eeee
Georgia | eeoe
Tech | 2°

The Power of Constraints

® this.x = that.x + that.w/2 - this.w/2
What’s so cool about this!?
® Power comes from dynamic computation of result
Value isn’t just computed immediately
Instead, saves references to objects involved in calculation

When any operand changes, result value is automatically
recomputed

® Express relationships declaratively

® Systems updates as necessary to preserve the constraints you've
specified

40

Example: doing springs and strut
with constraints

Parent

Georgia
S Te%h @

41

Example: doing springs and struts Ge%gg@ 000
with constraints

Parent

® First, what does this do?
® Objl and obj3 stay fixed distance from left and right edges

® Obj2 centered between them

42

Tech oo

Example: doing springs and struts Georgia@ eoo:

with constraints o

Parent

® Compute how much space is left

parent.slack = objl.w + obj2.w + obj3.w + stl.w + st2.w - parent.w

43

Tech oo

Example: doing springs and struts Georgia@ eoo:

with constraints oo

Parent

® Space for each spring

parent.sp_len = parent.slack / 2

44

Example: doing springs and struts Ge%%ig@
with constraints

Parent

® A little better version
parent.num_sp = 2

parent.sp_len = if parent.num_sp != 0 then parent.slack / parent.num_sp

else 0

45

Example: doing springs and struts Gegrgia eet

with constraints -

Parent

® Now assign spring sizes
spl.w = parent.sp_len
sp2.w = parent.sp_len

46

Example: doing springs and struts Ge%gg@ 1

with constraints

Parent

® Now do positions left to right
stl.x=0
objl.x =stl.x + stl.w
spl.x = objl.x + objl.w

47

Georgia |
Tech |

Power of constraints

® |f size of some component changes, system can
determine new sizes for springs, etc.

automatically

just change the size that has to change, the rest “just
happens”

very nice property

48

o000

o000

|| eee

Georgia | eee
Tech | 2°

Bigger example

® Suppose we didn’t want to fix number of children, etc. in
advance

don’t want to write new constraints for every layout

instead put constraints in object classes (has to be a more
general)

in terms of siblings & first/last child

49

Georgia | 0ce
Tech J :'
Bigger (generalized) example .

® First compute slack across arbitrary children
® Fach strut, spring, and object:
obj.sl_before = if prev_sibling != null
then prev_sibling.sl_after

else parent.w

50

Bigger (generalized) example

® For struts and objects:
obj.s|_after = obj.sl_before - obj.w
® For springs:

spr.sl_after = spr.sl_before

|
Georgia |
Tech |

51

00
| eo®e
Gegrrgiﬁ 55:.
ecn
V| e
Example of a “chained” computation

® Compute my value based on previous value
Special case at beginning
This now works for any number of children

adding a new child dynamically not a problem

® Very common pattern

52

00
0000
|| eee®e®
Georgia | eeoe
Tech | 2°
Now compute nhumber of springs

® For springs use:
spr.num_sp = if prev_sibling != null
then prev_sibling.num_sp + |
else |
® For struts and objects use:
obj.num_sp = if prev_sibling != null
then prev_sibling.num_sp
else 0

53

Georgia |
Tech |

Carry values to parent .

parent.num_sp = last_child.num_sp

parent.slack = last_child.sl_after

Again, don’t need to know how many children
Correct value always at last one

54

Compute spring lengths

parent.sp_len = if parent.num_sp != 0
then parent.slack / parent.num_sp
else 0

e00
| eee®e
| | eeoe
Georgia | eee
Tech | | 2°

55

Set sizes of springs & do
positions

® For springs use:

spr.w = parent.sp_len

® For all use:
obj.x = if prev_sibling != null
then prev_sibling.x + prev_sibling.w
else 0

Georgia |
Tech |

56

o000
| eee®e
| | eeee
Georgia | eee
Tech | 2°

More complex, but...

® Only have to write it once
put it in various superclasses

this is basically all we have to do for springs and struts
layout (if we have constraints)

can also do boxes and glue (slightly more complex, but not
unreasonable)

can write other kinds of layout and mix and match using
constraints

57

Georgia |
Tech |

Springs ‘n’ Struts in Swing

® Swing provides a basic constraint-based Springs’n’struts LayoutManager
javax.swing.SpringlLayout

® Allows simple arithmetic computation of constraints

58

Georgia |
Tech |

Dependency graphs

® Useful to look at a system of constraints as a
“dependency graph”

graph showing what depends on what

two kinds of nodes (bipartite graph)
variables (values to be constrained)
constraints (equations that relate)

59

Dependency graphs

® Example:A = {(B, C, D)

A

® Edges are dependencies

|| ®®
Georgia | eeoe
Tech| | %°

60

Georgia |
Tech

Dependency graphs

® Dependency graphs chain together: X =g(A,Y)

61

o000
| eee®®
| | eeee
Georgia | eeoe
Tech | | 2°

Kinds of constraint systems

® Actually lots of kinds, but 2 major varieties used
in Ul work

reflect kinds of limitations imposed

® One-Way constraints
must have a single variable on LHS
information only flows to that variable
can change B,C,D system will find A
can’t do reverse (change A ...)

62

Georgia
Tech |

One-Way constraints

® Results in a directed dependency graph:
A = (B,C,D) B

A—

D

® Normally require dependency graph to be acyclic
cyclic graph means cyclic definition

63

Georgia |
Tech |

One-Way constraints

® Problem with one-way: introduces an asymmetry
this.x = that.x + thatw + 5
can move (change x) “that”, but not “this”

64

e00

o00

|| eee

Georgia | eeo
Tech | : o

Multi-way constraints

® Don’t require info flow only to the left in equation
can change A and have system find B,C,D
® Not as hard as it might seem

most systems require you to explicitly factor the equations
for them

provide B = g(A,C,D), etc.

65

[
Georgia | eee
Tech

Multi-way constraints

® Modeled as an undirected dependency graph

® No longer have asymmetry

|
I o0

—

66

000
| eeee
| | eeoe
Georgia | eeo
Tech | | 2°

Multi-way constraints

® But all is not rosy

most efficient algorithms require that dependency graph be
a tree (acyclic undirected graph)

B

X——0 A—

OK

67

|| ®®
Georgia | eeoe
Tech | | 2°

Multi-way constraints

* But:A = f(B,C,D) & X = h(D,A)

X h A—

Not OK because it has a cycle (not a tree)

68

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Another important issue

® A set of constraints can be:
Over-constrained
No valid solution that meets all constraints
Under-constrained

More than one solution

= sometimes infinite numbers

69

Over- and under-constrained

® Over-constrained systems
solver will fail
isn’t nice to do this in interactive systems
typically need to avoid this

need at least a “fallback’ solution

Georgia |
Tech |

70

Georgia |
Tech |

Over- and under-constrained

® Under-constrained
many solutions
system has to pick one
may not be the one you expect

example: constraint: point stays at midpoint of
line segment

move end point, then!?

I:if

71

e00
0000
| | eoeee
Georgia | eeo
o0
®

Tech \
Over- and under-constrained .

® Under-constrained
example: constraint: point stays at midpoint of line
segment
move end point, then!?
Lots of valid solutions

* move other end point
= collapse to one point

" etc.

72

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Over- and under-constrained

® Good news is that one-way is never over- or under-
constrained (assuming acyclic)

system makes no arbitrary choices

pretty easy to understand

73

o000

o000

|| eee

Georgia | eee
Tech | 2°

Over- and under-constrained

® Multi-way can be either over- or under-constrained
have to pay for extra power somewhere

typical approach is to over-constrain, but have a mechanism
for breaking / loosening constraints in priority order

one way: “constraint hierarchies”

74

o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Over- and under-constrained

® Multi-way can be either over- or under-constrained
unfortunately system still has to make arbitrary choices
generally harder to understand and control

75

Implementing constraints

® Simple algorithm for one-way
Need bookkeeping for variables
For each keep:
value- the value of the var
eqn - code to eval constraint
dep - list of vars we depend on

done- boolean “mark” for alg

000
0000
| eee®e®
Georgia | eee
Tech| | 2°

76

Simple algorithm for one-way

® After any change:

// reset all the marks
for each wvariable V do
V.done = false;

// make each var up-to-date
for each wvariable V do
evaluate (V) ;

Georgia |
Tech |

77

Georgia |
Tech |

Simple algorithm for one-way

evaluate (V) :

1f (!V.done)
V.done = true;
Parms = empty;
for each DepVar 1in V.dep do
‘ Parms += evaluate (DepVar)
V.value = V.egn (Parms)

return V.value

78

Approach for multi-way Georgia
implementation

® Use a“planner” algorithm to assign a direction to each
undirected edge of dependency graph

® Now have a one-way problem

79

e00
0000
| | eeee
Georgia | eeo
Tech | | 2°

Better algorithms

® “Incremental” algorithms exist for both one-way and
multi-way
don’t recompute every variable after every (small) change

(small) partial changes require (small) partial updates

80

Georgia
Tech

&

81

